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Abstract. In this paper, we consider solutions and spectral functions of M-theory from Milne spaces with
extra free dimensions. Conformal deformations to the metric associated with real hyperbolic space forms
are derived. For the three-dimensional case, the orbifold identifications SL(2, Z + iZ)/{±Id}, where Id
is the identity matrix, is analyzed in detail. The spectrum of an eleven-dimensional field theory can be
obtained with the help of the theory of harmonic functions in the fundamental domain of this group and it
is associated with the cusp forms and the Eisenstein series. The supersymmetry surviving for supergravity
solutions involving real hyperbolic space factors is briefly discussed.

1 Introduction

The true nature of gravity, though well measured by solar
system scale experiments, is notwell determined at larger or
smaller scales. For example, the assumptions of dark matter
and/or energy aremade in order to fit the observedUniverse
within Einstein theory, yet it is quite possible that it is the
theory of gravity which should be modified to accomodate
these data. Theoretically, the possibility that gravity might
not be fundamentally described by a purely tensorial theory
in four dimensions is growing in importance. This is in part
a consequence of superstring theory, which is consistent in
ten dimensions (or M-theory in eleven dimensions), but
also the more phenomenological recent developments of
“braneworld” cosmological scenarios [1–5] have motivated
the study of other gravitational theories in four dimensions.

It is generally accepted that M-theory may provide
a consistent quantum theory of gravity. Nevertheless, it
is understood by now that to insert this theory in time-
dependent backgrounds can bring about a number of tech-
nical problems such as the appearance of closed timelike
curves and the spacetime resulting from string compact-
ification not being Hausdorff. Yet, open questions in cos-
mology such as the initial (big bang) singularity and the
initial boundary conditions remain a challenge and they
are the main motivations to consider string cosmology.

Initial boundary conditions and the requirement of ho-
mogeneity for the cosmological solution imply that the ge-
ometry has the form of a higher-dimensional Milne universe
along a null hypersurface, with negative constant curvature
in the spatial sector. This spacetime can be viewed partic-
ularly as hyperbolic compactifications in M-theory [6–8],

which have recently attracted some interest as they lead to
interesting cosmologies [9]. Cosmological string models in
a Milne universe have been considered by many authors.
Milne spaces in the context of inflationary cosmology were
studied in [10, 11]. String models in (1 + 1)-dimensional
Milne space were discussed in [6, 7, 12–16]. Discussions of
higher-dimensional Milne spaces can be found in [6, 12],
and in the more recent papers in [7, 15].

In the present paper we will extend these previous works
in order to contemplate the problem of hyperbolic com-
pactifications in the context of cosmological scenarios. In
particular, we will be interested in the general class of time-
dependent locally flat spacetimes obtained fromthe (N+1)-
dimensional Milne universe. Emphasis is put to the N = 3
case, which is analyzed in detail, and orbifold identifica-
tions using the modular group Γ = SL(2,Z + iZ)/{±Id},
where Id is the identity matrix is considered. In Sect. 2 we
analyze the class of conformal deformations of Riemannian
metrics and in particular the conformal relation between
Milne and hyperbolic space forms. In Sect. 3 we take into
account the constant slice in Milne spaces. In Sect. 4 we
consider hyperbolic geometry in the spatial section of the
Milne space. For co-compact groups Γ (i.e. for compact
real hyperbolic manifolds) the heat-kernel coefficients are
given in explicit forms. Orbifolding of the group Γ we de-
rived in explicit forms the Selberg trace formula and the
determinant of Laplace type operators. The study of this
theory involves harmonic analysis on locally symmetric
spaces of rank one from which we will extract some results
for the brane picture. Finally in Sect. 5 we discuss ques-
tions of supersymmetry surviving under the orbifolding of
a discrete group.
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2 Conformal deformations
and Milne space forms

Let M be a D = (N + 1)-dimensional Riemannian space
with metric

ds2 = g00(x)(dx0)2 + gij(x)dxidxj ,x = {xj} ,
i, j = 1, . . . , N.

For the conformal deformations of the gµν the following
relation holds:

g̃µν(x) = e2σ(x)gµν(x) , σ(x) ∈ C∞(M). (2.1)

Recalling that the partition function of field theory is given
by (in the Euclidean sector differential operators are ellip-
tic) W =

∫
d[ϕ] exp

(−(1/2)
∫

M
dDxϕLϕ

)
, where ϕ is a

scalar density of weight −1/2 and the operator L has the
form L = −�g +m2 + ξRg, where m (the mass) and ξ are
arbitrary parameters, while �g andRg are respectively the
Laplace–Beltrami operator and the scalar curvature of the
space with respect to the original metric g. One gets the
following result, a proposition due to Bytsenko, Cognola
and Zerbini [17].

Let ϕ̃ = eσϕ; then the conformal deformations (2.1)
lead to L̃ = e−σLeσ, and

Rg̃ = e−2σ [Rg − 2(D − 1)�gσ

−(D − 1)(D − 2)gµν∂µσ∂νσ] ,

�g̃ϕ̃ =
1
4

e−σ

× [
4�g − 2(D − 2)�gσ − (D − 2)2gµν∂µσ∂νσ

]
ϕ

= e−σ
[
�g + ξD(e2σRg̃ −Rg)

]
ϕ , (2.2)

L = eσ
{

−�g̃ + ξRg̃ + e−2σ
[
m2 + (ξ − ξD)Rg

]}
eσ,

where ξD = (D−2)/4(D−1) is the conformal invariant fac-
tor.

The classical conformal invariance requires that the
action S is invariant in form, that is S̃ = S[ϕ̃, g̃] (which
is to say L̃ = L). As it is well known, this happens only
for conformally coupled massless fields (ξ = ξD). For the
partition function we have W̃ = J [g, g̃]W , where J [g, g̃] is
the Jacobian of the conformal deformation.

For 0 < t < 1 the asymptotic expansion holds

Tr e−tL �
∑

j

Aj(L)t(j−D)/2 ,

Aj(L) = (4π)−D/2
∫

M

dDx
√
gaj(x|L), (2.3)

where aj(x|L) is the jth Seeley–De Witt coefficient (in
conformal invariant theories it is proportional to the trace
anomaly). If the boundary of a manifold is empty then
Aj(L) = 0 for any odd j. The results of the following
proposition hold.

Let us consider a family of conformal deformations

gq
µν = e2qσgµν = e2(q−1)σ g̃µν ,

√
gq ≡

√
|det gq

µν | = eDqσ√
g .

The metric is gµν or g̃µν according to whether q = 0 or
q = 1 respectively. Then

log J [gq, gq+δq] = log
[
Wq+δq/Wq

]
= (4π)−D/2δq

∫
M

dDx
√
gqaD(x|Lq)σ(x) , (2.4)

log J [g, g̃]

= (4π)−D/2
∫ 1

0
dq

∫
M

dDx
√
gq aD(x|Lq)σ(x) , (2.5)

logW = log W̃ − log J [g, g̃]

=
d

2ds
ζ(s|L̃�2)|s=0 − log J [g, g̃] . (2.6)

Equation (2.6) has been derived with the help of the zeta-
function regularization, � being an arbitrary parameter
necessary to adjust the dimensions.

2.1 Remark

The (N + 1)-dimensional Milne space is described by the
metric ds2 = −dt2+t2dH

N , where dH
N is the arc element

of the hyperboloid or upper halfN -plane. The space is flat,
as it is evident upon introducing Cartesian coordinates
as follows: U = ty−1, V = ty + U

∑N−1
j=1 x2

j , Xj = Uxj .

This provides the embedding of the hyperboloid in (N +
1)-Minkowski space, ds2 = −dUdV + dX2

j , where the
hyperboloid is described by t2 = UV − ∑N−1

j=1 X2
j , which

exhibits the SO1(N, 1) isometry of H
N .

Before concluding this section, some remarks on the
Milne metric are in order. New coordinates in the Euclidean
sector, t → it, can be introduced as follows: τ = log t, t �= 0
(t = 0 is a harmless coordinate singularity and corresponds
to a horizon in this metric). This gives the new form for the
metric: ds2 = e2τdτ2 +e2τdH

N . Taking into account (2.1)
one can choose σ(x) = −τ . In the Euclidean sector it gives

ds̃2 = dτ2 + dH
N . (2.7)

Therefore, in a class of conformal deformations the met-
ric (2.7) is related to the initial metric of the Milne space
and can be associated with spacetime forms of topology
S1 × H

N . One can use angular coordinates and define the
initial metric as follows:

ds2 = dt2 +
t2

ρ2 (dρ2 + dΩ2
N−1) , (2.8)

where dΩ2
N−1 is the metric of a (N−1)-dimensional space.

The technique of the conformal deformations of the Rindler
space (except for a horizon) with its connection to a space
with hyperbolic spatial section has been discussed in [17].
The metrics of both spaces have the form

ds2(Rindler) = ρ2dt2 + dρ2 + dΩ2
N−1

σ=−log ρ
=⇒
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ds̃2(S1×HN ) = dt2 +
1
ρ2 (dρ2 + dΩ2

N−1). (2.9)

For the Milne space a similar deformation (except for a
horizon) in coordinate τ becomes

ds2(Milne) = e2τ

(
dτ2 +

1
ρ2 (dρ2 + dΩ2

N−1)
)

σ=−τ=⇒

ds̃2(S1×HN ) = dτ2 +
1
ρ2 (dρ2 + dΩ2

N−1). (2.10)

The metrics on Rindler and Milne spaces are in the con-
formal class, and the connections between their conformal
deformations read τ = log ρ. Here we derive the operator
L̃N ≡ L̃−∂2

τ , acting on scalars in the spatial section of the
manifold defined by the metric (2.7),

L̃N = −�g̃
N − ρ2

N + e2τ (m2 + ξRg) , (2.11)

�g̃
N = ∂2

τ − (N − 1)∂τ + e2τ�N−1 ,

where �N−1 is the Laplace–Beltrami operator on (N −1)-
dimensional space, ρN = (N−1)/2. The appearance should
be noted of an effective “tachyonic” mass −ρ2

N , which
has important consequences for the structure of the zeta-
function related to the operator L̃N , which has gener-
ally speaking a continuum spectrum (see [17] for details).
We have the following proposition (Bytsenko, Cognola
and Zerbini [17]).

The trace of the heat kernel has the form

Tr e−tL̃N

=
(N−3)/2∑

n=0

A2n(LN−1) a(t| − �HN−2n − ρ2
N−2n)

N − 1 − 2n

×(4πε−2)(N−1−2n)/2

+
1

4
√

πt

[
d
ds
ζ(s|LN−1)|s=0 − 2ζ(0|LN−1)log(ε/2)

]

− 1
4
ζ(0|LN−1) +

1
2π
ζ(0|LN−1)

∫
R

drψ(ir)e−tr2
, (2.12)

Tr e−tL̃N

=
(N−2)/2∑

n=0

A2n(LN−1) a(t| − �HN−2n − ρ2
N−2n)

N − 1 − 2n

×(4πε−2)(N−1−2n)/2

+
1

4
√

πt
d
ds
ζ(s|LN−1)|s=0 (2.13)

valid for odd and even N respectively. Here by a(t| −
�HN−2n − ρ2

N−2n) we indicate the diagonal heat kernel
of a Laplace-like operator on H

N−2n, and ε is a horizon
cutoff parameter in integrating over coordinates.

3 Constant time slices in Milne cosmology

Now let us consider the eleven-dimensional metric

ds210 = −dt2 + t2dH
N +dx2

1 +dx2
2 +dx2

3 +
7−N∑
j=1

dy2
j , (3.1)

where the y coordinates describe compact internal dimen-
sions. This is an exact solution of M-theory [6–8]. The
internal space described by the y coordinates can be re-
placed by any Ricci flat space, giving a more general class
of cosmological backgrounds. Note that four-dimensional
Friedmann–Robertson–Walker cosmology can be obtained
from this model [7]. First, we replace the hyperboloid H

N

by a finite volume space Γ\H
N , where Γ is a discrete sub-

group of isometries such that the space has finite volume.
Then we compactify to four dimensions. To obtain the four-
dimensional Einstein frame metric, we write the metric in
the form

ds2 = e2a(t)ds24E + e2b(t)dH
N +

7−N∑
j=1

dy2
j , (3.2)

ds24E = e2c(t)(−dt2 + dx2
1 + dx2

2 + dx2
3) . (3.3)

If the condition e2aeNb = 1 is satisfied, then ds24E is the
Einstein frame metric. Comparing to (3.1), one obtains

ds24E = tN (−dt2 + dx2
1 + dx2

2 + dx2
3) , (3.4)

or

ds24E = −dτ2 + τ2N/(N+2)(dx2
1 + dx2

2 + dx2
3). (3.5)

This corresponds to 4D Einstein equations coupled to an
energy momentum tensor of a perfect fluid with equation of
state p = κρ, κ = (4 −D)/3D. Although we have started
with vacuum Einstein equations in ten dimensions, the
four-dimensional Einstein metric describes a homogeneous
and isotropic space in the presence of matter. This matter
is, of course, the scalar field associated with the modulus
representing the volume of the hyperbolic space. Interest-
ingly, the above metric is the asymptotic (large time) form
of the models of [9]. For D = 4, it describes a universe
filled with dust (p = 0), and for D > 4 a universe filled
with negative pressure matter1.

Since the models are based on a flat eleven-dimensional
geometry, the (N+1)-dimensional Milne universes provide
a simple setup for the study of interesting cosmological
models. Let us consider strings/branes propagating in this
space. An important question is whether the model is ex-
actly solvable. To start with, consider the model based on
H

N with no identification, i.e. Γ is trivial. From the relation
t2 − UV +

∑N−1
j=1 X2

j = 0 it follows that UV −X2
j ≥ 0. If

the physical space is restricted only to this Milne patch, say
with t > 0, then the brane coordinates are subject to the
constraint that the brane lives in the interior of the future
directed light cone; the space is not geodesically complete
and a full description requires boundary conditions at the
light cone surface. If it is possible that consistency also
requires the inclusion of the past light cone (in string the-
ory this is possible), then the geometry would describe a

1 In passing, we mention that, in Einstein gravity, the ac-
celerated expansion of a spatially flat universe requires the
cosmological dynamics to be dominated by some exotic matter
with negative pressure. We plan to address this problem in a
forthcoming paper.
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universe contracting to a big crunch which makes a tran-
sition to an expanding big bang universe. It is non-trivial
to impose the condition UV − X2

j ≥ 0 in brane theory.
On the other hand, if the full space U, V,Xj is considered,
closed timelike curves can arise in the exterior of the light
cone as a result of the identifications.

4 Hyperbolic geometry in M-theory

Let us consider an irreducible rank one symmetric space
X = G/K of non-compact type. Thus G will be a con-
nected non-compact simple split rank one Lie group with
finite center and K ⊂ G will be a maximal compact sub-
group. Up to local isomorphism we can represent X by the
following quotients:

X = SO1(N, 1)/SO(N) , SU(N, 1)/U(N) , (4.1)
SP(N, 1)/(SP(N) × SP(1)) , F4(−20)/Spin(9) ,

where the dimension of the spaces is N, 2N, 4N, 16 re-
spectively, in these cases. For details on these matters the
reader may consult [18]. The spherical harmonic analysis
on X is controlled by Harish-Chandra’s Plancherel den-
sity µ(r), a function on the real numbers R, computed by
Miatello [19–21], and others, in the rank one casewe are con-
sidering. The object of interest is the groupsG = SO1(N, 1)
(N ∈ Z+) and K = SO(N). The corresponding symmet-
ric space of non-compact type is the real hyperbolic space
X = H

N = SO1(N, 1)/SO(N) of sectional curvature −1.
Its compact dual space is the unit N -sphere.

4.1 Co-compact group

Let τ be an irreducible representation of K on a complex
vector space Vτ , and form the induced homogeneous vector
bundle G×K Vτ . Restricting the G action to Γ we obtain
the quotient bundle Eτ = Γ\(G ×K Vτ ) −→ XΓ = Γ\X
overX. The natural Riemannian structure onX (therefore
on XΓ ) induced by the Killing form ( , ) of G gives rise
to a connection Laplacian LΓ on Eτ . If ΩK denotes the
Casimir operator of K, that is ΩK = −∑

y2
j , for a basis

{yj} of the Lie algebra k0 of K, where (yj , y�) = −δj�,
then τ(ΩK) = λτ1 for a suitable scalar λτ . Moreover for
the Casimir operator Ω of G, with Ω operating on smooth
sections Γ∞Eτ of Eτ one has LΓ = Ω−λτ1 . For λ ≥ 0 let
Γ∞ (XΓ , Eτ )λ = {s ∈ Γ∞Eτ |−LΓ s = λs} be the space
of eigensections of LΓ corresponding to λ. Here we note
that if XΓ is compact we can order the spectrum of −LΓ

by taking 0 = λ0 < λ1 < λ2 < . . .; limj→∞ λj = ∞. Then
we have the theorem of Bytsenko and Williams [22], which
is as follows.

The heat kernel admits an asymptotic expansion (2.3),
and for all G except G = SO1(�, 1) with � odd, and for
0 ≤ k ≤ N/2 − 1,

Ak(LΓ ) = (4π)
N
2 −1χ(1) Vol(Γ\G)CGπ (4.2)

×
k∑

�=0

(−ρ2
N )k−�

(k − �)!

[
N

2
− (�+ 1)

]
!a2[ N

2 −(�+1)],

while for n = 0, 1, 2, . . . we have

AN
2 +n(LΓ ) = (−1)n(4π)

N
2 −1χ(1) Vol(Γ\G)CGπ

×

 N

2 −1∑
j=0

(−1)j+1 ρ
2(n+1+j)
N j!a2j

(n+ 1 + j)!

+ 2

N
2 −1∑
j=0

n∑
�=0

(−1)� ρ
2(n−�)
0

(n− �)!
β�+1(j)a2j


 . (4.3)

Here βr(j) (r ∈ Z+) is given by

βr(j)
def=

[
21−2(r+j) − 1

] [
π

a(G)

]2(r+j)

× (−1)jB2(r+j)

2(r + j)[(r − 1)!]
; (4.4)

Br is the rth Bernoulli number, a(G) def= π ifG = SO1(�, 1)
with � even, and a2j , CG are some constants (CG depending
on G). For G = SO1(2n+ 1, 1), k = 0, 1, 2, . . .

Ak(LΓ ) = π(4π)n− 1
2χ(1) Vol(Γ\G)CG

×
min(k,n)∑

�=0

(−n2)k−�Γ
(
n− �+ 1

2

)
a2(n−�)

(k − �)!
. (4.5)

4.2 The orbifold coset: Γ = SL(2, Z + iZ)/{±Id}

In [7] the SL(2,Z) orbifold model from Milne spaces and
the string spectrum associated with that orbifold has been
analyzed. It has been also shown that strings with SL(2,Z)
identifications are related to the null orbifold [12] with an
extra reflection generator.

Here we consider the case N = 3 and the group of local
isometry associated with a simple three-dimensional com-
plex Lie group. The discrete group can be chosen in the
form Γ ⊂ PSL(2,C) ≡ SL(2,C)/{±Id}, where Id is the
2 × 2 identity matrix and is an isolated element of Γ . The
group Γ acts discontinuously at the point z ∈ C̄, C̄ being
the extended complex plane. We consider a special discrete
group SL(2,Z + iZ)/{±Id}, where Z is the ring of integer
numbers. The element γ ∈ Γ will be identified with−γ. The
group Γ has, within a conjugation, one maximal parabolic
subgroupΓ∞. Let us consider an arbitrary integral operator
with kernel k(z, z′). Invariance of the operator is equiva-
lent to fulfillment of the condition k(γz, γz′) = k(z, z′) for
any z, z′ ∈ H

3 and γ ∈ PSL(2,C). So the kernel of the
invariant operator is a function of the geodesic distance
between z and z′. It is convenient to replace such a dis-
tance with the fundamental invariant of a pair of points
u(z, z′) = |z−z′|2/yy′, thus k(z, z′) = k(u(z, z′)). Let λj be
the isolated eigenvalues of the self-adjoint extension of the
Laplace operator and let us introduce a suitable analytic
function h(r) and r2j = λj −1. It can be shown that h(r) is
related to the quantity k(u(z, γz)) by means of the Selberg
transform. Let us denote by g(u) the Fourier transform of
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h(r), namely g(u) = (2π)−1
∫

R
dr h(r) exp(−iru). We now

have the following theorem.
Suppose h(r) be an even analytic function in the strip

|r| < 1 + ε (ε > 0), and h(r) = O(1 + |r|2)−2. For the
special discrete group SL(2,Z+iZ)/{±Id} the Selberg trace
formula holds∑

j

h(rj) −
∑

{γ}Γ ,γ �=Id,
γ-non-parabolic

∫
dµ(z) k(u(z, γz))

− 1
4π

∫
R

dr h(r)
d
ds

logS(s)|
s=1+ir

+
h(0)

4
[S(1) − 1] − Cg(0)

= Vol(Γ\G)
∫ ∞

0

dr r2

2π2 h(r)

− 1
4π

∫
R

drh(r)ψ(1 + ir/2). (4.6)

The first term in the right hand side of (4.6) is the con-
tribution of the identity element, Vol(Γ\G) is the (finite)
volume of the fundamental domain with respect to the
measure dµ, ψ(s) is the logarithmic derivative of the Euler
Γ -function, and C is a computable real constant [23–25].
The function S(s) is given by a generalized Dirichlet se-
ries S(s) = π1/2Γ (s− 1/2)[Γ (s)]−1 ∑

c�=0
∑

0≤d<|c| |c|−2s,
where the sums are taken over all pairs c, d of the matrix(∗ ∗

c d

)
⊂ Γ∞\Γ/Γ∞.

The meromorphic function S(s) is convergent for � s > 1,
and it poles are contained in the region � s < 1/2 and in
the interval [1/2, 1].

In general, the determinant of an elliptic differential
operator requires a regularization. It is convenient to in-
troduce the operator LΓ (δ) = LΓ + δ2 − 1, with δ a
suitable parameter. One of the most widely used regu-
larizations is the zeta-function regularization. Thus, one
has logdetLΓ (δ) = −(d/ds)ζ(s|LΓ (δ))|(s=0). In standard
cases, the zeta-function at s = 0 is well defined and one gets
a finite result. The meromorphic structure of the analyti-
cally continued zeta-function is related to the asymptotic
properties of the heat-kernel trace. Summarizing, the fi-
nal result is the theorem due to Bytsenko, Cognola and
Zerbini [24].

The following identity holds:

detLΓ (δ) =
2

(πδ)1/2Γ (δ/2)
(4.7)

× exp
(

− 1
6π

Vol(Γ\G)δ3 + Cδ

)
ZΓ (1 + δ),

where ZΓ (s) is Selberg’s zeta-function.
Let us analyze a scalar field propagating in these orb-

ifolds. Normalizable wave functions associated with a scalar
density can be written in terms of cusp forms. Cusp forms
are authomorphic functions which decrease exponentially

at infinity. The discrete part of the spectrum is associated
with cusp forms, while the Eisenstein series is related to
the continuous part. A vertex operator of a brane model
contains cusp forms. In the string case a computation of
S-matrix elements by using plane-wave vertex operators
has been discussed in [7]. Such a computation for Kaluza–
Klein quantum numbers of brane modes turn out to be
more complicated, and we disregard it.

Finally we note that in the SL(2,Z + iZ)/{±Id} orb-
ifold the instability may be absent. To demonstrate that
for three-orbifold we can use the arguments given for string
models in [7]. The instability may originate from the grav-
itational interaction of plane waves. The continuum part
of the spectrum may lead to wave interactions, but it is
severely restricted by SL(2,Z + iZ)/{±Id} symmetry, and
the argument of [26] of instability does not seem to directly
apply to our case. In the discrete part of the spectrum the
states have a finite motion, and the corresponding wave
functions are regular.

5 Cosets Γ\G/K and Killing spinors

In the previous sections we have considered real hyperbolic
space forms. The hyperbolic spaces H

N have Killing spinors
transforming in the spinorial representation of SO1(N −
1, 1) [27] (see also [6,28,29]). Thus the simplest membrane
model with trivial Γ allows for supersymmetry. In general,
the following results hold, a proposition by Friedrich [30].

A Riemannian spin manifold (MN , g) admitting a
Killing spinor ψ �= 0 with Killing number µ �= 0 is locally
irreducible. we can proof this as follows.

Let the locally Riemannian product have the form
MN = MK ×MN−K . Let X ,Y be vectors tangent to MK

andMN−K respectively, and, therefore, the curvature ten-
sor of the Riemannian manifold (MN , g) be trivial. Since
ψ is a Killing spinor the following hold:

∇Xψ = µX · ψ,
4µ2 = [N(N − 1)]−1R at each point of a (5.1)

connected Riemannian spin manifold
(
MN , g

)
,

where R is the scalar curvature. Because of (5.1) we have

∇X ∇Yψ = µ(∇X Y) · ψ + µ2Y · X · ψ =⇒
(∇X ∇Y − ∇Y∇X − ∇[X ,Y])ψ

= µ2(Y · X − X · Y)ψ. (5.2)

The curvature tensor R(X ,Y) in the spinor bundle S is re-
lated to the curvature tensor of the Riemannian manifold
(MN , g): R(X ,Y) = (1/4)

∑N
j=1 ejR(X ,Y)ej · ψ, where

{ej}N
j=1 is an orthogonal basis in the manifold. There-

fore (5.2) can also be written

N∑
j=1

ejR(X ,Y)ejψ + [N(N − 1)]−1R(XY − YX )ψ = 0.

(5.3)
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From (5.3) we get R · X · Y · ψ = 0, and moreover X and
Y are orthogonal vectors. Since µ �= 0 (R �= 0) it follows
that ψ = 0; hence there a contradiction.

We have also the following statement due to Fried-
rich [30].

Let (MN , g) be a connected Riemannian spin manifold
and letψ be a non-trivial Killing spinor with Killing number
µ �= 0. Then (MN , g) is an Einstein space. The proof
easily follows from the proposition with (2.5) and (2.6);
indeed (MN , g) is an Einstein space of scalar curvature
given by (5.1).

There are no normalizable modes for any field configu-
rations in hyperbolic spaces. Spaces with finite volume for a
fundamental domain can be obtained by forming the coset
spaces with topology Γ\H

N where Γ is a discrete subgroup
of the isometry group. Let us comment on the supersymme-
try of these spaces following the lines of [6,7]. For non-trivial
Γ and finite volume space Γ\H

N it has been shown [6] that
for evenN supersymmetries are always broken by the iden-
tifications. Indeed, the isometry group of H

N is SO1(N, 1)
and Γ is in general a subgroup of SO1(N, 1), which may or
may not have fixed points. Killing spinors are in the spino-
rial representation of SO1(N−1, 1), and if Γ is a subgroup
of SO1(N −1, 1) but it is not a subgroup of SO1(N −3, 1),
then there are no surviving Killing spinors. The latter exist
if Γ ∈ SO1(N −3, 1), but in this case Γ\H

N will still be of
infinite volume. Therefore, for even N there are no finite
volume cosets Γ\H

N with unbroken supersymmetries. On
the other hand, for odd N this analysis does not exclude
that an appropriate choice of Γ could give a supersymmet-
ric model with finite volume hyperbolic space. For odd N
there are two Killing spinors on H

N in the spinorial rep-
resentation of SO1(N − 1, 1). These spinors are also Weyl
spinors of the isometry group SO1(N, 1), so they form an
irreducible Dirac spinor of SO1(N, 1). All supersymmetries
are broken if Γ is not a subgroup SO1(N − 1, 1). If Γ is a
subgroup SO1(N − 1, 1), then half of the supersymmetries
survive. A question of interest is whether supersymmetry
survives under the orbifolding by the discrete group Γ .
Perhaps there are more solutions involving real hyperbolic
spaces, where some supersymmetries are unbroken. How-
ever the analysis of that problem is complicated and we
leave it for another occasion.
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